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We suggest a model for data losses in a single node �memory buffer� of a packet-switched network �like the
Internet� which reduces to one-dimensional discrete random walks with unusual boundary conditions. By
construction, the model has critical behavior with a sharp transition from exponentially small to finite losses
with increasing data arrival rate. We show that for a finite-capacity buffer at the critical point the loss rate
exhibits strong fluctuations and non-Markovian power-law correlations in time, in spite of the Markovian
character of the data arrival process.
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Many systems, both natural and man-made are organized
as complex networks of interconnected entities: brain cells
�1�, interacting molecules in living cells �2�, multispecies
food webs �3�, social networks �4�, and the Internet �5� are
just a few examples. In addition to the classical Erdös-Rényi
model for random networks �6�, new overarching models of
scale-free �7� or small-world �8� networks turn out to de-
scribe real-world examples. These and other network models
have received extensive attention by physicists �see Refs.
�9,10� for reviews�.

A particularly interesting problem for a wide range of
complex networks is their resiliency to breakdowns. The
possibility of random or intentional breakdowns of the entire
network has been considered in the context of scale-free net-
works where nodes were randomly or selectively removed
�11–13�, or in the context of small-world networks where a
random reduction in the sites’ connectivity leads to a sharp
increase in the optimal distance across network which de-
stroys its small-world nature �13–15�. In all these models, the
site or bond disorder acts as an input which makes them very
general and applicable to a wide variety of networks.

Network breakdowns can result not only from a physical
loss of connectivity but from an operational failure of some
network nodes to forward data. In the more specific class of
communication networks, this could happen due to excessive
loading of a single node. This could trigger cascades of fail-
ures and thus isolate large parts of the network �16�. In de-
scribing the operational failure in a particular network node,
one needs to account for distinct features of the dynamically
“random” data traffic which can be a reason for such a break-
down.

In this paper we model data losses in a single node of a
packet-switched network like the Internet. There are two dis-
tinct features which must be preserved in this case: the dis-
crete character of data propagation and the possibility of data
overflow in a single node. In the packet-switched network
data is divided into packets which are routed from source to
destination via a set of interconnected nodes �routers�. At
each node packets are queued in a memory buffer before
being serviced, i.e., forwarded to the next node. �There are
separate buffers for incoming and outgoing packets but we
neglect this for the sake of simplicity.� Due to the finite ca-
pacity of memory buffers and the stochastic nature of data

traffic, any buffer can become overflown which results in
packets being discarded.

We consider a model where noticeable data losses in a
single memory buffer start when the average rate of random
packet arrivals approaches the service rate. Under this con-
dition the model has a built-in sharp transition from free flow
to lossy behavior with a finite fraction of arriving packets
being dropped. A sharp onset of network congestion is famil-
iar to everyone using the Internet and was numerically con-
firmed in different models �17�. Here we stress that such a
congestion can originate from a single node.

While data loss is natural and inevitable due to the data
overflow, we show that loss rate statistics turn out to be
highly nontrivial in the realistic case of a finite buffer, where
at the critical point the magnitude of fluctuations can exceed
the average value, while they obey the central limit theorem
only in the �unrealistically� long-time limit. Such an impor-
tance of fluctuations in some intermediate regime is a defini-
tive feature of mesoscopic physics, albeit the reasons for this
are absolutely different �note that even in the case of elec-
trons, the origin of the mesoscopic phenomena can be either
quantum or purely classical; see, e.g., �18��. Although we
model data arrivals as a Markovian process, the loss rate at
intermediate times shows long-range power-law correlations
in time. When excessive data losses start, it is more probable
that they persist for a while, thus impacting on network op-
eration.

The average loss rate and/or transport delays were previ-
ously studied, e.g., in theories of bulk queues �19,20� or a
jamming transition in traffic flow �21�. What makes present
considerations qualitatively different is that we analyze fluc-
tuations of a discrete quantity, the number of discarded pack-
ets. Although fluctuations in network dynamics were previ-
ously studied �see, e.g., �22��, this was done in the
continuous limit for the data traffic, through measurements
or numerical simulations.

The mode of operation of a memory buffer is that packets
arrive randomly, form a queue in the buffer, and are subse-
quently serviced. Each packet in the queue has typically a
variable length and is normally serviced in fixed-length ser-
vice units at discrete time intervals on a first-in first-out ba-
sis. Here we choose the simplest nontrivial model of this
class: �i� packets have a fixed length of two service units; �ii�
arrival and service intervals coincide. The length of the
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queue after n service intervals, �n, serves as a dynamical
variable which obeys the discrete-time Langevin equation,

�n+1 = �n + �n, �1�

where the telegraph noise �n is defined by

�n = �1, 0 � �n � L − 1,

0, �n = L ,
� with probability p

�n = � 0, �n = 0,

− 1, 1 � �n � L .
� with probability 1 − p �2�

The above means that the length of the queue, measured in
service units, either increases by one when one packet arrives
and one service unit is served, or decreases by one when no
packet arrives. The boundary conditions above correspond to
discarding a newly arrived packet when the buffer is full
��n=L� and to an idle interval when no packet arrives at an
empty buffer ��n=0�. We show at the end of the paper that
more accurate considerations, with arrival and service inter-
vals not coinciding, do not change the asymptotic form of
our results.

The main quantity which characterizes congestion is the
packet loss rate which is defined via the number of packets
discarded during a time interval N by

LN�n0� = �
n=n0+1

n0+N

��n,L��n+1,L. �3�

This means that the packet is discarded if by the moment of
its arrival the queue was at the maximal capacity L as illus-
trated in Fig. 1. Thus the loss rate �3� is defined entirely by
the processes at the boundary of the random walk �RW� so
that the continuous limit cannot be exploited. This makes the
loss statistics profoundly different from, e.g., the thoroughly
studied statistics of first-passage time �23�.

We will express the average and the variance of the loss
rate �3� via the conditional probability of the queue being of
length � at time n provided that it was of length �� at time n0,
defined by

Gn−n0
��,��� = ���n,���n0

,��	/���n0
,��	 ,

where �…	 stands for the averaging over the telegraph noise
of Eqs. �1� and �2�. The stationary distribution of the queue
length is related to G by

Pst��� = lim
n0→−�

Gn−n0
��,��� = ���n,�	 . �4�

On averaging the loss rate Eq. �3�, we thus obtain

�LN	 = Pst�L�NG1�L,L� , �5�

while its second moment is given by

�LN
2	 = �

n,m=n0+1

n0+N

���n,L��n+1,L��m,L��m+1,L	

= �LN	 + 2Pst�L�G1
2�L,L� �

n�m

Gm−n−1�L,L� . �6�

To calculate G, we note that it is the Green’s function of
the master equation �ME� corresponding to the Langevin
equation �1�. The ME can be written in terms of the prob-
ability Pn��� for the queue being of length � at time n as

Pn+1��� = �
��

w�,��Pn����, 0 � �,�� � L . �7�

The transition matrix ŵ with elements w�,�� corresponding to
Eqs. �1� and �2� is given by

w�,�� = p��−1,�� + �1 − p���+1,��, 0 � � � L , �8�

with the boundary conditions

w�,�� =

�1 − p���0,�� + �1,��� , � = 0,

p��L−1,�� + �L,��� , � = L ,

�1 − p���,0 + p��,1, �� = 0,

�1 − p���,L−1 + p��,L, �� = L .
� �9�

Equations �7� and �8� describe the usual biased discrete-time
RW on a one-dimensional lattice �23�. However, both the
quantity to calculate, Eq. �3�, and the boundary conditions
Eq. �9� make the problem under consideration profoundly
different from those in �23�.

Equations �7�–�9� are clearly non-Hermitian. This leads to
different right, �+, and left, �−, eigenfunctions of the matrix
ŵ �normalized by ��=0

L �+����−���=1�:

ŵ�k
+ = �k�k

+, ŵT�k
− = �k�k

−, �10�

where �k are the eigenvalues, labeled with a discrete “mo-
mentum” k. Although there exists a similarity transformation
which makes the problem Hermitian �which means that all �k
are real�, it is convenient to keep the above representation
unchanged.

The Green’s function of the ME �7� can be expressed as

Ĝn= ŵn which gives Gn�� ,���=�k�k
n�k

+����k
−����. Diagonaliz-

ing the tridiagonal matrix ŵ defined by Eqs. �8� and �9�, one
finds the eigenvalues of Eq. �10�:

FIG. 1. The model of data losses: incoming packets randomly
arrive in discrete time intervals and join the queue of length �
limited by the memory buffer capacity L. Packets in front of the
queue are served at the same time intervals. If the queue sticks to
the boundary, newly arriving packets are discarded.
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�k = 2�p�1 − p�cos k , �11�

where k=�n / �L+1�, n=1,2 , . . . ,L. The appropriate eigen-
functions are given by

�k
±��� = ckq

±�/2�sin k�� + 1� − q1/2 sin k�� ,

ck
2 =

2p

�L + 1��1 − �k�
, q 


p

1 − p
. �12�

The eigenfunctions corresponding to k=0 are given by

�0
+��� = c0q�, �0

−��� = c0, c0
2 =

1 − q

1 − qL+1 , �13�

and the appropriate eigenvalue �0=1 is separated by a gap
from the continuous �as L→�� spectrum of Eq. �11�, unless
p=1/2. The RW is biased toward �→L �full buffer and con-
gested traffic� for p	1/2, or toward �→0 �empty buffer�
for p�1/2. At p=1/2 when the RW is unbiased and the
eigenvalue spectrum is gapless, the fluctuations are strongest.
In all cases, since �0=1 while �k�1 for k�0, it is the iso-
lated solution �13� which governs the stationary distribution
�4�:

Pst��� = lim
n0→−�

Gn−n0
��,��� = c0

2q�. �14�

Noticing that G1�� ,���=w�,�� so that G1�L ,L�= p, one finds
the average loss rate from Eqs. �5� and �14� as

1

N
�LN	 = p

qL+1 − qL

qL+1 − 1
——→

L
1 

2p − 1, p 	

1

2
,

1

L + 1
, p =

1

2
,

1 − 2p

1 − p
qL, p �

1

2
.
�

Thus the loss rate for p	1/2 is of order 1, for p=1/2 a
small fraction of the buffer capacity, and for p�1/2 an ex-
ponentially vanishing function, as expected. The matching
between the three asymptotic regimes takes place in a narrow
region �of width �1/L� around p= 1

2 .
The result for the variance Eq. �6� is conveniently ex-

pressed in terms of the “compressibility” defined by

��LN
2 	 
 �N�LN	, �LN�n� = LN�n� − �LN	 . �15�

From Eqs. �6� and �12� we find

�N = 1 − pPst�L� +
4p�1 − p�

L + 1 �
k	0

sin2 k

�1 − �k�2�1 −
1

N

1 − �k
N

1 − �k
� .

�16�

The behavior of � is illustrated in Fig. 2 which shows its fast
increase at the critical point, p=1/2. Using Eq. �11� for �k, it
is easy to simplify Eq. �16�. We find that a steady-state re-
gime �when one neglects the N-dependent term in the large
parentheses above� is reached for N
N0 where

N0 
 ��2p − 1�2 + ��/L�2�−1.

In this regime, the compressibility saturates at

�� = 

1 − �2p − 1�

�2p − 1�
, �2p − 1�L 
 1,

3

2
L , �2p − 1�L � 1.�

Although it diverges in the thermodynamic limit L→� and
N /L2→�, at the transition point p=1/2, the variance �15� in
this limit remains finite and obeys the central limit theorem.

However, this limit is reachable at the critical point only
for unrealistically long times N
N0
L2. In the intermedi-
ate, practical regime 1�N�N0, the compressibility rapidly
increases with time:

�N = cN1/2, c =
2�2

�
�

0

� dx

x2 �1 −
1 − e−x2

x2 � , �17�

so that the variance exceeds the average value of the loss rate
and its distribution is no longer normal. More importantly, in
this regime the fluctuations of the loss rate are no longer
Markovian as they exhibit long-time correlations. To show
this, we consider the temporal correlation function of the loss
rate defined by

R2�N,M� 

��LN�0��LN�M�	

��LN
2 	

, M 	 N .

We obtain an exact expression for R2�N ,M� similar to that
for �N, Eq. �16�, omitted for brevity. In the most relevant
regime N0
N
1 and M 	N, it reduces to

R2�N,M� =
pN

�N
�e−M�2p − 1�2/2� 2

�M

− �2p − 1�erfc��2p − 1��M/2�� . �18�

At the critical point this reduces using Eq. �17� to

�R2�N,M��p=1/2 = c−1� N

2�M
. �19�

This long-time correlation �in spite of the packet arrival be-
ing Markovian� is another clear sign of criticality.

Let us note that the boundary conditions in Eq. �9� corre-

FIG. 2. Compressibility � �for L=1000� shows a fast increase of
fluctuations in time at the critical point p=1/2.
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spond to simultaneous arrival and service of packets. In this
case overflown packets are only partially discarded. In more
realistic models the overflown packets should be discarded
completely. To reflect this, we can choose one of the standard
procedures: service first or packet arrival first. This is
straightforward to formulate: the transition matrix remains
the same in the bulk, Eq. �8�, while it changes in 3�3 blocks
in the boundary corners. In solving the eigenvalue problem
�10� the appropriate boundary layer states can be eliminated.
This reduces our problem to that described by Eqs. �8� and
�9� but with a smaller number of states and different �and
dependent on eigenvalues� corner elements on the main di-
agonal. This can be solved in a similar way as the model of
Eqs. �7�–�9� and the dependence on N and M turns out to be
the same in the asymptotical regime of Eqs. �17�–�19�.

In conclusion, we have demonstrated that the stochastic

nature of discrete data traffic in packet-switched networks
�e.g., the Internet� results in a critical behavior with an abrupt
transition from free to lossy operation at the level of a single
node when the arrival rate reaches a certain critical value.
The critical point is characterized by strong fluctuations and
long-memory effects in the loss rate. This leads to an opera-
tional failure of a single node which can contribute to cas-
caded failures and thus congestion of large parts of the net-
work. We intend to use the results of the present model as
building blocks for describing such a congestion within the
framework that accounts also for the topological disorder
�24�.
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